The Impact of Space Weather on Satellites

Aurora viewed from the International Space Station
Auroral beads seen from the International Space Station on Sept. 17, 2011. Aurora are visible markers of space weather processes around Earth. Image courtesy NASA.

Spacecraft in orbit are at risk of developing problems from exposure to space weather—ranging from surface and electronics degradation to temporary or permanent failure—compromising spacecraft capability and overall performance. While general interactions between space weather and spacecraft are understood, identifying the exact impact on hardware and operations can take days.

Scientists and engineers at The Aerospace Corporation, sponsored by Space Systems Command (SSC) Development Corps Innovation and Prototyping Directorate and the Air Force Research Laboratories, intend to reduce the time it takes to identify a potential space weather-anomaly for satellites in any orbit. The Energetic Charged Particle (ECP)-Lite is a package of sub-sensors that can monitor major space weather hazards.

ECP-Lite launched on Dec. 7 as part of the aft payload (LDPE-1) on the STP-3 mission via a United Launch Alliance Atlas V rocket from Cape Canaveral Space Force Station in Florida.

“Trying to understand what’s happening to the satellite itself, ruling in or out problems, is becoming more and more important,” said Dr. Joseph Mazur, Principal Director in Aerospace’s Physical Sciences Laboratories. “ECP-Lite is a low-cost, easily integrable sensor that you can put on a satellite to eliminate the uncertainty.”

Monitoring the Space Environment

Auroras, such as the northern lights, are a visible example of space weather: the conditions of space near Earth caused by activity on the sun’s surface and in interplanetary space. Maintaining awareness of space weather is important as it can hinder technology-causing anomalies on a satellite, impacting radio signals, or even affecting navigation systems-and disrupt human activities.

For these reasons, the U.S. Air Force and U.S. Space Force require ECP sensors to be integrated on its satellites to provide better attribution of environmentally caused anomalies.

“Proliferating affordable sensors, such as ECP-Lite, and aggregating the data will provide information to decrease fog in the space environment. We must leverage this information to attribute hostile acts, inform domain awareness, and support satellite development,” said Capt. Zachary Morley, Program Manager for Integrated Command and Control for SSC. “I was extremely fortunate to have a passionate and brilliant team developing the ECP-Lite class of sensors. It is amazing to see the sensors launch, but it is no surprise — the team has always moved with world-class agility, foresight, and passion.”

ECP-Lite is a small suite of eight sub-sensors can monitor space weather’s impact on its host. A unique part of the payload is a plank (photo right) inscribed with 46 names, as a tribute to their support of the ECP-Lite mission — a project which required collaboration across different teams and locations.

The small suite of eight sub-sensors that make up ECP-Lite can monitor space weather’s influence on its host’s electronics and materials. The device can monitor four major hazards, including single event effects, surface dose, and internal and surface charging. This innovative technology taps into previous research and development efforts creating miniaturized sensors.

Besides being small in size, ECP-Lite is low in cost, weight, power, and integration on the host. With these qualities, ECP-Lite can be integrated on a satellite with minimal risk. The instrument is particularly relevant as national defense agencies increasingly recognize the consequences space weather can have on vital systems, requiring their future satellites to have space weather monitoring capabilities.

“It’s like insurance. You may not need it for five or 10 years, but when you get into an accident, you’re happy you have coverage,” said Peter Cunningham, Systems Director in Aerospace’s Developmental Prototypes & Projects. “That’s exactly what ECP-Lite is. If you have an anomaly on your satellite, you need to understand the space weather environment.”

Accelerating Awareness for Resilient Space Systems

ECP-Lite’s host will convey data back to ground-based facilities where the information can be processed. When an anomaly does arise, instead of a time-consuming effort that spans days to identify the impact, satellite operators will be able to figure out the root cause of the problem within minutes. This reduction in time enables mission personnel to perform recovery, protection and other responses quickly.

A key part in shortening the knowledge gap and reaction time is ensuring satellite operators on the ground can readily interpret the data being transmitted.

“The sensor is part of a bigger story where data is power,” said Mazur. “Aerospace excels at translating technical knowledge of radiation levels into what a satellite operator needs to know. If a problem occurs and they check the ECP-Lite data, they should be able to get an answer immediately at machine speed.”

Benefits of collecting data and building further comprehension of space weather’s impacts extend beyond the immediate ECP-Lite host. Increasing awareness can help inform industry on the types of satellite infrastructure needed for future missions.

“When you build a satellite, you build it to a certain level of space radiation hardness,” said Douglas Holker, Principal Director in the Developmental Prototypes & Projects. “If you can understand the environment a satellite has to go through, you can change that amount of hardness. That changes the weight and the costs. ECP-Lite can help the future design of satellites and systems.”




We operate the only federally funded research and development center (FFRDC) committed exclusively to the space enterprise.

Love podcasts or audiobooks? Learn on the go with our new app.

Recommended from Medium

NASA’s New “Lunar Backpack” Can Generate a Real-Time 3D Terrain Map To Aid Moon Explorers

Exoplanets: Is Life Out There?

circle plot showing the relative sizes of Earth, Jupiter, Kepler37-b (smallest), K2–18 b, and HD 100546 b (largest)

Elvantis is The Whole Universe — Let Our Nation Conquer You!

Can There Be A Full Moon Two Nights In A Row?

Can There Be A Full Moon Two Nights In A Row?

Are we Alone in the Universe?

In Space, No One Can Hear You Scream … And Other Myths

[NEWS] MINE(SpaceMine) will be listed on BITTREX

The First Antarctic Greenhouse Harvest May Lettuce Go to Mars

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
The Aerospace Corporation

The Aerospace Corporation

We operate the only federally funded research and development center (FFRDC) committed exclusively to the space enterprise.

More from Medium

How to Track Space Objects on Orbit

Creating Martian Delicacies with Hydroponics

The Nuclear Option

How much land would it take to run the Netherlands on solar energy?